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The overall goal of this study has been to validate computational models for predicting aryl hydrocarbon
receptor (AhR) binding. Due to the unavailability of the AhR X-ray crystal structure we have decided to
use QSARs models for the binding prediction virtual screening. We have built up CoMFA, Volsurf, and
HQSAR models using as a training set 84 AhR ligands. Additionally, we have built a hybrid model combining
two of the final selected models in order to give a single operational system. The results show that CoMFA,
VolSurf, HQSAR, and the hybrid models gives good results (R2 equal to 0.91, 0.79, 0.85, and 0.82 andq2

0.62, 0.58, 0.62, and 0.70, respectively). Since the techniques analyzed show a good correlation and good
prediction also for an external test set, particularly the HQSAR and the hybrid model, we can conclude that
these models can be used for predicting AhR binding in virtual screening.

Introduction

Nuclear receptors are involved in the regulation of critical
cellular processes such as regulation of cell growth, differentia-
tion, and metabolic processes.1 They constitute an important
super family of transcription regulators that include the dioxin/
aryl hydrocarbon receptor (AhR). Free AhR is located in the
cytoplasm, associated with heat shock proteins. Ligand binding
to AhR is presumed to produce conformational changes in the
AhR protein, causing the translocation of the whole complex
into the nucleus.2,3 Within the nucleus, the AhR-ligand complex
dissociates from associated proteins and dimerizes with ARNT
(its nuclear partner) to reconstitute an active transcription factor
that binds specific DNA sequences.4 Other AhR ligands such
as dibenzo-p-dioxin (TCDD) and coplanar polychlorinated
biphenyls (PCBs) are potent toxicants widespread in the
environment. Their resistance to metabolic breakdown along
with their lipophility causes them to accumulate in the food
chain, bringing about their relevant effects on human health.5,6

The enormous number of compounds within the human food
supply makes it impracticable to screen all of them for nuclear
receptor binding experimentally. However computational pro-
cedures are available that can rapidly assess the likelihood of a
given compound to bind a given receptor.7-9 These rapid in
silico methods can be used to prioritize compounds for follow-
up experimental verification of nuclear receptor binding.

Computational methods for affinity prediction may be broadly
classified into two categories.10 When a detailed 3D structure
of the protein receptor is known, then receptor fitting approaches
can be done by docking a candidate ligand into the receptor
cavity and using either molecular mechanics or an empirical
scoring function to estimate the interaction energy, hence the
affinity between the ligand and the receptor. The receptor
structure can be obtained experimentally (e.g., X-ray crystal-
lographic or NMR). Alternatively, if the structure has not been
determined, but experimental structure(s) of closely related

proteins are available, a homology model can be created by
threading the sequence of the target receptor through an
experimental template and mutating the corresponding amino
acid residues in the template to match those of the target
receptor. If no experimental structure or homology model is
available, then a second method, calledreceptormapping, can
be used, which attempts to build a model of the receptor based
on what binds to it. A variant of receptor mapping is 3D-QSAR
(quantitative structure-activity relationship) in which a series
of ligands with known affinity is aligned and then the strengths
of the electrostatic and steric potentials of each ligand at regular
grid points surrounding the molecule are correlated with the
affinity of the compound. Once a QSAR regression equation
has been generated for a training set of molecules, it can be
used to predict the affinity of molecules not included in the
training set. Another alternative toreceptor mappingis to use
other QSAR techniques that do not need structures optimization
and superimposition. They are fast, user-friendly, and do not
need human supervision, so they fit the purpose of virtual
screening very well.

To identify unknown endocrine disruptors in the food supply,
the AhR is a critical receptor, since no crystallographic structure
of this receptor is available upon which to base a virtual screen.
For this reason we created a homology model of the ligand
binding domain (LBD) of AhR based on the NMR structure of
the C-terminal PAS domain of human HIF-2a (PDB code
1P97).11 However because of the relatively low sequence
homology (∼25%) between the target AhR and the experimental
template HIF-2a, virtual screening using this homology model
is not likely to be accurate enough. As an alternative, we used
QSAR models based on the experimentally determined binding
affinities of dioxin and other families of AhR ligands to predict
the activity of new ligands. Using published data and 3D-QSAR
models by Waller and McKinney,12 we added further descriptors
and we explored more sophisticated and automatic methods for
ligands alignment (maximizing overlap of steric and electrostatic
fields), which is the critical phase that determines the quality
and the utilization of the resultant 3D-QSAR model for the
prediction of a big library of compounds. Additionally, we
explored alternative tools for virtual screening. One of the
proposed within this work, VolSurf,13 does not require the
alignment of the molecules; the other alternative, Hologram
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QSAR, is based on molecular fragments and also does not
require structure optimization.

Experimental Details

Data Set. We used a set of 93 AhR ligands, splitted into a
training and test sets, with experimental binding affinities as in the
original article by Waller and McKinney,12 considering the negative
logarithm of the chemical molecular concentration necessary to
displace 50% of radiolabeled 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) from the Ah receptor and reported as pIC50. These data
came from three different laboratories using 2,3,7,8-tetrachloro-
dibenzofuran (TCDF) as internal standard, to provide normalization
for interlaboratory variability. All pIC50 values used to build up
the models were normalized to a value of 8.444 for TCDF. From
the original data set of 99 compounds it was decided to remove
five of them, for which precise binding data were not available,
and their removal greatly improved also the Waller et al. model.12

Two compounds in the data set used by Waller et al. have identical
structures and affinities (dibenzofurans called57 and 63 in the
original article), so we used only one, eliminating the duplication.
Our models were through and applied for the screening of a list of
artificial chemicals with high exposure risk identified given by the
European Commission within CASCADE (EU contract no. FOOD-
CT-2004-506319). Within the list of compounds to screen only nine
have known binding activity, and we recognized that they were
already included in the data set selected. Therefore, we excluded
them from the training set and they have been used as the external
set to validate our virtual screening method. Thus, in this work we
used 84 compounds as a training set, plus the nine compounds in
the external test set. They include the dibenzo-p-dioxins, dibenzo-
furans, biphenyls, naphthalenes, indolocarbazoles, and indolocar-
bazoles derivatives listed in Tables 1-7.

Molecular Modeling and Alignment Rules. The 3D atomic
coordinates of the compounds were extracted from the SMILES
using CORINA software.14 A rough geometry optimization was
performed using Schrodinger premin and Schrodinger Bmin MMFF/
MCMM for a stochastic conformational search including full
geometry optimization to find the global energy minimum.15

We also considered some constrains of the central torsion angle
to 0° for nonplanar ligands (e.g., biphenyls) using MacroModel/
MMFF and Maestro 7.0 graphical user interfaces and setting the
torsion constraint to 4.182 kJ/mol (1 kcal/mol). Charges used within
this work were based on the density functional B3LYP ab initio
calculations at the 6-311G+ level.

The SEAL program that maximizes the overlap of steric and
electrostatic fields16 was used for aligning the ligands. Aligning
the ligands using SEAL with the electrostatic parameter reduced
the default value of 1.0-0.33, increases the alignment quality of
the smaller ligands such as biphenyls that achieve better results,
since steric components are now more heavily weighted than
electrostatic ones.

Calculation of Descriptors (CoMFA, VolSurf, Hologram, log
P, SE). The CoMFA analysis was done on a Linux-based PC
workstation using the software package SYBYL version 7.1.17 The
aligned molecules were placed in a three-dimensional grid space
with the dimensions automatically set by the program and 1.5 Å
(x, y, z) grid stepping. An absolute maximum of 30 kcal/mol for
the steric and electrostatic energy calculated at each grid point was
established experimentally. The CoMFA descriptors in terms of
van der Waals (steric) and Coulombic (electrostatic) interactions
were calculated using an sp3 carbon atom with a+1 charge as a
probe. Equal weights were assigned to steric and electrostatic fields
using the CoMFA standard scaling procedure implemented in
SYBYL. The important issue of the reduction of the number of
descriptors was considered.18 In the case of the CoMFA model,

Table 1. Dibenzo-p-dioxins

compda R1 R2 R3 R4 R6 R7 R8 R9 pIC50 log P SE

1 H Cl Cl H H Cl Cl H 9.144 6.35 0
2 Cl Cl Cl H H Cl Cl H 8.118 6.84 0
3 H Cl Cl H Cl Cl H H 7.768 6.22 0
4 H Cl Cl H Cl H H H 7.61 5.74 0
5 Cl Cl Cl Cl H Cl Cl H 7.49 7.32 0
6* Cl H Cl H H Cl Cl H 6.975 6.43 0
7* Cl Cl H Cl H Cl Cl H 6.811 6.92 0
8 Cl Cl Cl Cl H H H H 6.728 5.84 0
9 H Cl Cl H H Cl H H 8.171 5.74 0

10 H Cl H H H H Cl H 6.281 5.12 0
11 Cl Cl Cl Cl H Cl H H 5.937 6.71 0
12 Cl Cl H Cl H H H H 5.585 5.43 0
13 Cl Cl Cl Cl Cl Cl Cl Cl 5.715 8.30 0
14 Cl H H H H H H H 4.572 4.10 0
15* H Br Br H H Br Br H 10.086 6.99 0
16* H Br Br H H Cl Cl H 10.093 6.67 0
17* H Br Cl H H Cl Br H 10.687 6.67 0
18* H Br Cl H H Cl Cl H 9.074 6.51 0
19 Br H Br H H Br H Br 8.038 7.15 0
20 Br H Br H H Br Br H 9.943 7.07 0
21 Br Br H Br H Br Br H 8.881 7.72 0
22* Br Br Br H H Br Br H 9.35 7.64 0
23 H Br Br H H Br H H 10.209 6.22 0
24 H Br H H H Br H H 8.927 5.45 0
25 H Br H H H H H H 7.464 4.41 0

a The compounds of the test set are marked with an asterisk.

Table 2. Dibenzofurans

compd R1 R2 R3 R4 R6 R7 R8 R9 pIC50 log P SE

26 H Cl H H H H H H 4.061 4.48 0
27 H H Cl H H H H H 5.003 4.48 0
28 H H H Cl H H H H 3.429 4.48 0
29 H Cl Cl H H H H H 6.088 5.04 0
30 H Cl H H Cl H H H 4.125 5.12 0
31 H Cl H H H H Cl H 4.103 5.12 0
32 Cl H Cl H Cl H H H 6.123 5.82 0
33 Cl H Cl H H H Cl H 4.653 5.82 0
34 H Cl Cl Cl H H H H 5.396 5.59 0
35 H Cl Cl H H H Cl H 6.858 5.67 0
36 H Cl H H Cl Cl H H 7.255 5.67 0
37 H Cl Cl Cl Cl H H H 7.379 6.23 0
38 H Cl Cl Cl H H Cl H 7.657 6.23 0
39 Cl H Cl H Cl H Cl H 7.61 6.53 0
40 H Cl Cl H H Cl Cl H 8.444 6.23 0
41 Cl Cl H Cl H H Cl H 5.715 6.42 0
42 Cl Cl H Cl Cl Cl H H 8.194 6.98 0
43 Cl Cl H Cl H Cl H Cl 5.371 7.13 0
44 Cl Cl Cl Cl H H Cl H 7.911 6.83 0
45 Cl Cl Cl H H Cl Cl H 8.147 6.79 0
46 Cl Cl H Cl H Cl Cl H 6.728 6.98 0
47 H Cl Cl Cl H Cl Cl H 8.943 6.79 0
48 Cl Cl Cl Cl H Cl Cl H 7.587 7.39 0
49 Cl Cl Cl H Cl Cl Cl H 7.508 7.34 0
50 Cl Cl H Cl Cl Cl Cl H 5.808 7.53 0
51 H Cl Cl Cl Cl Cl Cl H 8.376 7.34 0
52 H Cl Cl H Cl H Cl H 7.61 6.38 0
53 Cl Cl Cl H Cl H H H 7.379 6.23 0
54 Cl Cl Cl H H Cl H H 7.954 6.23 0
55 Cl H Cl Cl H Cl Cl H 7.657 6.98 0
56 H Cl Cl Cl H Cl H Cl 7.657 6.93 0
57 Cl Cl Cl H H Cl H Cl 7.313 6.93 0
58 H H H H H H H H 3.429 3.84 0
59 H Cl Cl Cl H Cl H H 8.689 6.23 0
60 Cl Cl Cl H H Cl H H 7.954 6.23 0
61 Cl H Cl Cl H Cl Cl H 7.623 6.98 0
62 H Cl Cl Cl H Cl H Cl 7.623 6.93 0
63 Cl Cl H Cl Cl H Cl H 6.297 7.13 0
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where thousands of descriptors are calculated during the analyses,
the performance of different models considering the balance
between grid stepping and molecular filtering was assayed. Finally,
we selected a small grid stepping of 1.5 Å and an high column
filtering of 2.5 to take into account most of the information and to
avoid the problem of the computational time being intolerably long.
This “column filtering” technique reduced the number of columns
in the QSAR Molecular Spread Sheet to 435.

We have calculated as well VolSurf descriptors, which do not
need structures to be aligned. The program calculates energetically
favorable interaction sites around the molecules to produce a 3-D
molecular interaction fields (MIF)19 grid map that is compressed
into a few quantitative 2-D numerical descriptors that are physi-

cochemically meaningful.13,20 We used five probes (water, hydro-
phobic, carbonyl oxygen, carboxy oxygen, and amphipathic) to
characterize the interaction sites around target molecules. Three-
dimensional molecular field maps were transformed into 118
descriptors by VolSurf 4.0. Such descriptors were molecular volume
(V), surface (S), molecular weight (MW), critical packing (CP),
size of the hydrophilic (W) and hydrophobic (D) region, hydrogen-
bonding properties (HB), integy moments and hydrophobic integy
moment, and local interaction energy minima, which represent the
energy of the best three local minima of interaction energies
between the water probe and the compound. Integy moments are
vectors pointing from the center of the mass to the center of
hydrophilic and hydrophobic regions, respectively.

The HQSAR approach uses as molecular descriptors holograms
that encode a fixed length array containing counts of a priori defined
substructural fragments. This method uses only 2D structure
information, thus avoiding the usual conformational flexibility and
structure alignments problems. Holograms were generated using
the standard parameters implemented in Sybyl 7.1. Molecular
fragments were generated using the fragment size default (minimum
4, maximum 7) and the following fragment distinctions: atoms,

Table 3. Biphenyls

compd R2 R3 R4 R5 R6 R2′ R3′ R4′ R5′ pIC50 log P SE

64 H Cl Cl H H H Cl Cl H 7.028 6.41 1
65 H Cl Cl Cl H H H Cl H 5.204 6.37 1
66 H Cl Cl Cl H H Cl Cl H 7.871 6.99 1
67 Cl H H H H H Cl Cl Cl 5.584 6.24 1
68 Cl Cl Cl H H H Cl Cl H 6.134 6.82 1
69 Cl H Cl Cl H H Cl Cl H 5.762 6.99 1
70 Cl Cl Cl Cl H H H Cl H 6.157 6.78 1
71 Cl Cl Cl Cl H H Cl Cl H 6.057 7.40 1
72 Cl H Cl Cl H H Cl Cl Cl 5.482 7.57 1
73 Cl Cl Cl Cl H H Cl Cl Cl 5.885 7.98 1
74 Cl H Cl H H Cl H Cl H 4.442 6.41 1
75 Cl H Cl Cl H Cl H Cl Cl 4.689 7.57 1
76 Cl Cl Cl Cl H H H H H 4.405 6.10 1
77 Cl H Cl H Cl H Cl Cl Cl 4.577 7.57 1

Table 4. Naphthalenes

compd R1 R2 R3 R4 R5 R6 R7 R8 pIC50 log P SE

78 H Br Br H H H H H 5.616 4.67 0
79 H Br Br H H Br Br H 7.668 6.19 0
80 Br Br H Br H Br Br H 7.465 7.10 0
81 Br Br Br Br H Br Br H 7.608 7.66 0
82 Br Br Br H Br Br Br H 7.996 7.62 0

Table 5. Indolocarbazoles

compd X R1 R2 R3 R4 pIC50 log P SE

83 N CH3 H H H 8.921 5.55 0
84 S H H H H 8.482 6.57 0
85 N H H H H 8.444 5.14 0
86 N CH2CH3 H H H 8.051 6.48 0
87 N COCH3 H H H 7.951 3.64 0
88 N H CH3 H H 7.721 6.26 0
89 O H H H H 7.538 5.74 0

Table 6. Indocarbazole Derivates

compd X pIC50 log P SE

90 C 8.602 6.97 0
91 N 6.863 4.84 0

Table 7. Indocarbazole Derivates

compda R1 pIC50 log P SE

92* H 7.319 5.67 0
93* CH3 6.857 6.67 0
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bonds, and connections. The HQSAR analysis was done by
screening the 12 default series of hologram length values from 53
to 401 bins. The fragment patterns counts from the training set
compounds were then related to the measured biological activity,
and the best HQSAR model hologram length found was 257 bins.

The logarithm of octanol-water partition coefficient, logP, was
calculated using the Pallas 3.021 package.

An indicator variable that takes into account strain energy (SE)
was also added as descriptor for all ligands that were not torsionally
constrained and in fact are, in the global energy minimum, set SE
) 0.0 and, for torsionally constrained ligands, set SE) 1.0.

Statistical Analysis. Statistical analysis was done using the
partial least squares (PLS) method as employed in the QSAR
module of SYBYL 7.1 and VolSurf 4 running on a Linux-based
PC workstation. PLS is based on linear transformation of the
descriptors’ space, producing a new variable space based on a small
number of orthogonal factors (latent variables), so there is no
correlation. This method is particularly useful when the number of
variables equals or exceeds the number of compounds (data points),
because it leads to stable, correct, and highly predictive models,
even for correlated descriptors.22,23To establish the maximal number
of components contributing to the model with the lowest standard
error of estimate (SEE), PLS analysis was combined with leave-
one-out (LOO) cross-validation (CV). LOO-CV implies exclusion
of each compound of the training set and the prediction of its
activity by the model developed using the remaining compounds.
To assess the goodness of the model we used the cross-validated
coefficient q2, which expresses the model’s ability to reproduce
the training set. It was calculated as follows:

whereYpred, Yobsd, andYmeanare predicted, actual, and mean pIC50,
and ∑(Ypred - Yobsd)2 is the predictive sum of squares known as
PRESS. For each model, the LOO-CV predictions were examined.
The models were subsequently validated also using cross-validation
with 10 groups. In this way, the data set is randomly divided into
10 sets with approximately equal size and class distributions. The
model is trained afterward using all but one of the 10 groups and
then tested on the unseen group. This procedure is repeated for
each of the 10 groups. The cross-validation score is the average
performance across each of the 10 training runs.

After establishing the optimal number of components, the PLS
procedure was repeated without cross-validation while being given
the exact number of components contributing to the final model as
input. When additional columns (SE and logP descriptors) were
added to the molecular spread sheet, the QSAR standard scaling
method was set during the PLS analysis to weight the SE and log
P columns as heavily as the CoMFA and Hologram descriptors.

Since the high LOOq2 is the necessary condition but not a
sufficient one for a model to have a high predictive power,24 we
also used cross-validation with 10 groups and an external test set
of compounds never seen by the models. For the ideal model, the
slope and the correlation coefficient is equal to 1 and intercept is
equal to 0. Since a good QSAR model may have a high predictive
ability if it is close to the ideal one, we have set the intercept of
the test set plot to 0.

A hybrid model was also developed in order to improve the final
results. To build combined models we used in-house software built
as a PC-Windows Excel macro. We have selected the rule-based
approach that consists of dividing the results interval into three
main areas, where some of the values maximum, minimum, or mean
from the selected models will rule the trend of the final model. In
this way we have obtained a noncontinuous function that can be
expressed as combinations of simple linear equations such as:

The result can be regarded as a new set of rules whose final

expression is a hybrid system able to combine different models.
The final expression found can be expressed in the following way.

If mean(models to combine)> 6.642

If mean(models to combine)> 3.604

Otherwise

A systematic variation of the combinations of maximum, minimum,
and mean values, a decision on which models to combine, and a
later optimization of the values ofV1, V2, k1, a1, k2, a2, k3, a3 to
give a better value forr2 were carried out. The optimization has
been performed by means the downhill simplex method modified
to search uphill for the higherr2 values. A cross-validation has
been also performed to obtain theq2 value as described in eq 1 for
the new hybrid model.

Results

Molecular Modeling and Alignment Rules.The constraint
of the central torsion angle to 0° for nonplanar ligands
(biphenyls) had very little effect on the torsion angle (<1°) for
biphenyl without ortho substituents, because the potential energy
surface is very steep. However, for biphenyls with one or more
ortho and ortho-prime substituents, the constrained optimization
had more effect on the order of 10-15° twisting relative to the
global energy minimum (due to a shallower potential energy
surface). The biphenyls are thus somewhat more planar, but
the central torsion angles are still bigger than 45°. This approach
does not force the biphenyls too much into a planar conforma-
tion. Although crystallographic structures of biphenyls are planar
and the most potent AhR ligands are planar, it is also true that
the crystallographic structure of biphenyls is planar because of
the very large crystal packing force in small molecule crystals,
but this is not necessarily true for protein/ligand complexes.
Furthermore, the crystallographic structures show an average
conformation. The true conformation may be a 50-50 mixture
of two nonplanar conformations that when averaged appear
planar. Finally, there are also small molecule crystallographic
structures of biphenyl with one or more ortho subsituents that
deviate significantly from planarity. In any case, the more toxic
PCBs described, like PCB 126, do not have chlorine atoms in
ortho positions.

Statistical Analysis. For the prediction of AhR binding
affinity we applied CoMFA, Hologram, and VolSurf analysis
to the pIC50 of a data set of dioxins and dioxin-like compounds.
Tables 1-7 list the experimental pIC50, the log P, the strain
energy descriptors and the corresponding structures of the
compounds studied. Several CoMFA, HQSAR, and VolSurf
models were developed, and the best models were selected
according to the lowest number of components, the best
statistical results after PLS analysis, and the greatest predictive
power for the external test set. Table 8 gives a summary of the
PLS analysis for the best models selected and reports the relative
contributions of each model together with the optimal number
of components,q2 LOO, andq2 CV using 10 groups andR2.

log P, which is a measure of the compound’s lipophilicity
and a crude measure of desolvation energy, was added as an
additional descriptor because numerous studies frequently have
shown logP to be important in predictive QSAR models. In
fact, it does generally well describes the bioavailability of a

q2 ) 1 - ∑(Ypred- Yobsd)
2

∑(Yobsd- Ymean)
2

(1)

pIC50 calc) kn[Min,Mean,Max(models to combine)]+ an (2)

pIC50 calc) 1.049[Min(models to combine)]+ 0.002

pIC50 calc) 1.005[Min(models to combine)]- 0.009

pIC50 calc) 1.021[Mean(models to combine)]- 0.106
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chemical to the organism. Since octanol can represent the cell
membrane, logP indicates the chemical’s ability to permeate
it and to be available for interaction with the organism. In
general, the more hydrophobic the ligand, the higher the AhR
binding affinity. The square of logP was also included to allow
for a parabolic relationship between affinity and logP, since
very hydrophobic ligands may have solubility problems and
therefore lower apparent affinity. This was the case of the
HQSAR model, which gave better results with this additional
descriptor, so this model was selected and reported here.

The results for all models show good LOO regression
coefficients, 0.62, 0.62, and 0.58, respectively, for CoMFA,
HQSAR, and VolSurf. In all cases, no significant differences
were observed using leave-more-out with 10 groups and the
cross-validation regression coefficients (0.62, 0.66, and 0.5,
respectively, for CoMFA, HQSAR, and VolSurf); this highlights
the stability and predictivity of the models.

For practical reasons, the target of this work was to look for
a general model with an adequate predictive power useful for
virtual screening; thus, we have decided to carry out the
combination of the models by means a rule-based approach.
Such an approach was tested to analyze how prediction
performances can be increased by combining individual models.
The best result was obtained by the combination of the HQSAR
and Volsurf models. The model obtained gave better results than
the individual ones (q2 LOO ) 0.70,R2 test set) 0.73).

The CoMFA model shows the importance of the alignment
rules and the improvement with the use of the SEAL program,
not only for the automatic, reproducible, and fast way of aligning
the molecule, but also the easier application of the model in
predicting external compounds. In fact, the CoMFA model is
limited for fast virtual screening of a large compound libraries
when very complicated and different alignment rules are applied
to the dataset. Our CoMFA model also shows the importance
of an additional descriptor (SE). The introduction of an indicator
variable that takes account of strain energy (SE equal to 0 for
all ligands that were not torsionally constrained and 1 for
torsionally constrained ligands) adds information about the
different energy minimization rules for the different families
of compounds and confirms the importance of not forcing the
biphenyls too much into a planar conformation. For the
optimized CoMFA model the contribution parameters that depict
the relevance of the descriptors are 0.31, 0.64, and 0.05
respectively from steric, electrostatic field, and logP, showing
the more relevant electrostatic properties of these compounds.

The statistical CoMFA analyses can be confirmed visually
on the contour plot (Figure 1) using the most active compound
of the training set (23) for visualization. In this plot positive
steric contributions are represented in green, negative contribu-
tions in yellow, positive electrostatic contributions in blue, and

negative ones are red. The CoMFA contour map shows several
red areas around the R2, R3, R7, and R9 dibenzo-p-dioxin
substituents, representing regions where an electronegative
environment would enhance the toxicity. Another red contour,
near one of the dioxin ring oxygen atoms, indicates that high
electron density may play a negative role in the toxicity of these
compounds. The four blue contours encompassing the R1, R3,
R4, and R8 dibenzo-p-dioxin substituents in the template
molecules indicate regions where electropositive groups increase
the activity. There is also a big green area around the R7

substituent, indicating a sterically favorable region. The yellow
steric region near the oxygen of the para dioxin ring and the
substituents R2, R3, R4, and R6 suggests that the bulkier
substituents may reduce the activity.

The need for structural alignment camplicates 3D QSAR, but
an interesting alternative is using VolSurf models. They are fast
and completely independent of the alignment procedures, so
they fit very well for fast virtual screening. Our VolSurf model
gave good results withq2 LOO being smaller than that for
CoMFA, but using fewer components for the analysis. VolSurf
descriptors quantitatively characterize size, shape, polarity,
hydrophobicity, and the balance between them. We analyzed
the VolSurf descriptors profile for compound23 by means of
the PLS coefficient plot. The activity increases particularly with
high values of hydrophilic regions (WOH2); capacity factors
(CwOH2), which measure the amount of hydrophilic regions
per surface unit; local interaction energy minima distance of
water probe (DOH2); hydrogen bonding (HB); logP; molecular
weight; and the volume of interactions (WO). Hydrophobic
regions (DDRY) and integy moments from the hydrophobic
probe (IDDRY) are inversely related to activity, where the integy
moment is a vector that measures the imbalance between the
center of mass and the position of the hydrophobic regions
around it. Chemically speaking, high hydrophobic integy
moments mean that strong hydrophobic regions are concentrated
in a few areas of the molecular surface. Summing up, it can be
deduced that the toxicity for AhR binding increases with the
hydrophilicity and therefore with the delocalization of the
hydrophobicity.

We obtained a HQSAR model, based only on the 2D
structures, comparable in predictive ability to that derived from
CoMFA studies (q2 LOO ) 0.62). In HQSAR it is possible to
visualize the individual contribution to activity of each atom in

Table 8. Summary of CoMFA, VolSurf, HQSAR Results for the
Training Set

CoMFA HQSAR VolSurf hybrid

optimal no. of components 7 9 5 2
q2 LOO 0.62 0.62 0.58 0.70
q2 CV 10 groups 0.62 0.66 0.50 -
R2 0.91 0.85 0.79 0.73

Contributions
CoMFA steric 0.31 N/A N/A N/A
CoMFA electrostatic 0.64 N/A N/A N/A
Hologram257 N/A 0.46 N/A N/A
SE 0.05 0.03 N/A N/A
log P N/A 0.27 N/A N/A
(log P)2 N/A 0.23 N/A N/A

Figure 1. CoMFA contour plot map using the most active compound
of the training set (23) for visualization: positive steric contributions
are in green, negative contributions are yellow, positive electrostatic
contributions in blue, and negative in red.
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a given molecule of the data set by generating contribution maps.
The HQSAR module implemented in Sybyl 7.1 uses the
following color code to distinguish the main atomic contribu-
tions to activity: the colors at the red end of the spectrum (red,
red-orange, and orange) reflect poor contributions and colors
at the green end (yellow, green-blue, and green) reflect favorable
contributions, while atoms with intermediate contributions are
white. Figure 2 shows the individual atomic contributions for
the most toxic compound of the training set (23). One fragment
of this molecular structure, the dibenzo-p-dioxin moiety, seemed
strongly related to the toxicity of this compound. The substit-
uents R4, R6, and R7 are yellow or green, indicating their positive
contributions to the activity, while the other substituents are
white, as they are invariant in the training set. Regions with
intermediate or poor contribution in all molecules can be
identified as potentially responsible in toxicity.

The predictive power of the models was tested using an
external set of nine compounds. The predicted values for the
test set compounds are given in Table 9, while Figures 3-6
show the plot of experimental versus predicted of each model
for the test set. We considered that these test set compounds
were able to cover half of the activity on the whole model, the

most active half. In our case, indeed, this is the most important
part to analyze, because the aim of these models is to find fast
and reliable methods to look for potential contaminants that can
be present in food, and therefore, we want to be sure that they
are able to predict and highlight the most toxic and dangerous
compounds more than nontoxic ones. Moreover, theR2 related
to the external test set reported in this paper has been calculated
by forcing the regression line to pass through zero; this is an

Figure 2. Individual atomic contributions for the most toxic compound
of the training set (23): the colors at the red end of the spectrum (red,
red-orange, and orange) reflect poor contributions, at the green end
(yellow, green-blue, and green) favorable contributions, and atoms with
intermediate contributions are white.

Table 9. External Test Set Prediction Results

compd pIC50 CoMFA VolSurf HQSAR hybrid

6 6.97 7.95 8.43 7.61 7.98
7 6.81 7.586 7.63 6.93 7.27

15 10.09 9.29 10.19 10.39 10.7
16 10.09 9.121 9.76 9.57 10.05
17 10.69 9.065 9.89 9.03 9.48
18 9.07 9.045 9.15 8.86 9.3
22 9.35 8.326 10.18 10.10 10.6
92 7.32 7.533 5.91 7.05 6.2
93 6.86 7.577 6.8 7.33 7.14

Figure 3. CoMFA plot of the experimental versus predicted pIC50 for
the training and test set.

Figure 4. VolSurf plot of the experimental versus predicted pIC50 for
the training and test set.

Figure 5. HQSAR plot of the experimental versus predicted pIC50 for
the training and test set.

Figure 6. Hybrid model plot of the experimental versus predicted pIC50

for the training and test set.
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extrapolation equivalent to adding a compound with activity
equal to zero to the test set. It will decrease and underestimate
our R2

test results, but it can give a better idea of the external
predictivity of our models. HQSAR was the fastest and most
predictive model and can easily be used for prioritizing a list
of potentially toxic compounds.

Discussion

Three QSAR methods (CoMFA, VolSurf, and HQSAR) were
evaluated for predicting AhR binding. The QSAR models differ
in how well the data fit the model. Since the regression
coefficient (R2) is greater for CoMFA analysis (0.91) than for
VolSurf (0.79) and HQSAR (0.85), it can be inferred that the
CoMFA model is the best. However, the cross-validation
coefficient (q2) for HQSAR is the same as the CoMFA one
(0.62). The stability test (q2 CV using 10 groups) showed that
the exclusion of groups of compounds does not substantially
change the results. Finally, the greater predictive ability of
HQSAR was confirmed by the external test set prediction.
Moreover, we also provided additional evidence that there is
no correlation between the values ofq2 for the training set and
the accuracy of prediction (R2) for the test set.24 Certainly in
the CoMFA analyses theR2

test value does not show very good
values in spite of presenting high LOOq2. This evidence very
well underlines the contradiction between theq2 andR2

testresults
and guarantees that the HQSAR and VolSurf models will work
for truly external compounds belong to the applicability domain
defined.

An important role of a HQSAR model, besides predicting
the activities of untested molecules, is to provide hints about
what molecular fragments are directly related to biological
activity. This information, combined with the CoMFA map, can
give useful information about the toxicity of compounds not
already tested. Figures 1 and 2 show the results using color
codes for the contributions of CoMFA and HQSAR: they are
in good agreement. Indeed R4 and R7 substituents make a
positive contribution for both maps, R4 with an electrostatic
contribution and R7 a steric one. The prevailing electrostatic
contributions to the CoMFA model could be explained by the
electrostatic nature of interactions and fit well with the results
given by the VolSurf analysis that shows an increase of the
toxicity with the hydrophobicity. Therefore, from a qualitative
point of view the value of the CoMFA, VolSurf, and HQSAR
analysis lies in the interpretation of the contributions of different
descriptors on model responses, thus helping to understand the
mechanism of action.

A rule-based model is an improvement in the final perfor-
mance. Although it makes mandatory the calculation of activity
values for the selected models, the hybrid model derived from
HQSAR and Volsurf seems to be fairly robust and fast for
consideration as a valid alternative in the virtual screening
approach; mainly considering that the CoMFA approach is a
rather complex one. Additionally, such methodology combines
results from approaches with very different backgrounds, hence
taking advantage of their qualities.

Other QSAR models published on the Ah receptor were
considered25-28 and thoroughly compared to the ones obtained
in this paper. The major advantage found in our models is their
usability, reproducibility, and quickness, facts that are of the
greatest importance for virtual screening purposes. In fact, with
equal performances, or an even slightly lower one, the easier
model should be preferred.

Conclusion

This study developed a virtual screening method for fast
prioritization of AhR binding predictions. Because of the
relatively low sequence homology (∼25%) between the target
AhR and the experimental template HIF-2a and subsequent
difficulty in docking known high-affinity AhR ligands to this
structure, virtual screening based on this homology model was
not likely to be very accurate. As an alternative, 3D-QSAR
models (using CoMFA, VolSurf, and HQSAR) were used based
on the extensive literature of experimentally determined binding
affinities of dioxin and other structural classes of AhR ligands.

The CoMFA model developed in this work was constructed
by considering the issues of usability, reproducibility, and
quickness, particularly taking into account the actual weakness
related with the alignment, essential in the CoMFA approach.
Actually, we have looked for an automatic and fast alignment
rule that does not need any manual operation dealing with the
individual structures. The SEAL alignment used is completely
automatic and fast, making the CoMFA model very suitable
for a large library of compounds to screen. Moreover, we tried
to simplify our models in two different ways, the first one was
going over the alignment rules using a computer program that
does not need superimposition (VolSurf) and the second one
was going over the optimization of the structure (HQSAR).

Both the HQSAR and the hybrid rule-based approaches
resulted in mathematical models with greater predictive ability
(q2) than the already described models. Both are fast and highly
predictive QSAR techniques that very rapidly generate models,
making it applicable for screening a large amount of data.
Moreover, the interpretations of the different families of
descriptors show good agreement.

The rigorous procedure adopted to test the methods ensures
their applicability and reliability in predicting the binding affinity
of not yet tested chemicals. Therefore, these methodologies can
be used to select and limit the compounds for testing and will
boost the chances of finding AhR ligands in food, saving time
and money and focusing work on the most promising chemicals
that act through this receptor.
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